3.1.57 \(\int \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x)) \, dx\) [57]

Optimal. Leaf size=116 \[ -\frac {b c x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {1-c^2 x^2}}+\frac {1}{2} x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{4 b c \sqrt {1-c^2 x^2}} \]

[Out]

1/2*x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))-1/4*b*c*x^2*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/4*(a+b*arcs
in(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/c/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {4741, 4737, 30} \begin {gather*} \frac {1}{2} x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))+\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2}{4 b c \sqrt {1-c^2 x^2}}-\frac {b c x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

-1/4*(b*c*x^2*Sqrt[d - c^2*d*x^2])/Sqrt[1 - c^2*x^2] + (x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/2 + (Sqrt[d
 - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(4*b*c*Sqrt[1 - c^2*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4741

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*((
a + b*ArcSin[c*x])^n/2), x] + (Dist[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(a + b*ArcSin[c*x])^n/S
qrt[1 - c^2*x^2], x], x] - Dist[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[x*(a + b*ArcSin[c*x])^(
n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx &=\frac {1}{2} x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\sqrt {d-c^2 d x^2} \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {1-c^2 x^2}} \, dx}{2 \sqrt {1-c^2 x^2}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int x \, dx}{2 \sqrt {1-c^2 x^2}}\\ &=-\frac {b c x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {1-c^2 x^2}}+\frac {1}{2} x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 b c \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 111, normalized size = 0.96 \begin {gather*} \frac {\sqrt {d-c^2 d x^2} \left (a^2-b^2 c^2 x^2+2 a b c x \sqrt {1-c^2 x^2}+2 b \left (a+b c x \sqrt {1-c^2 x^2}\right ) \text {ArcSin}(c x)+b^2 \text {ArcSin}(c x)^2\right )}{4 b c \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

(Sqrt[d - c^2*d*x^2]*(a^2 - b^2*c^2*x^2 + 2*a*b*c*x*Sqrt[1 - c^2*x^2] + 2*b*(a + b*c*x*Sqrt[1 - c^2*x^2])*ArcS
in[c*x] + b^2*ArcSin[c*x]^2))/(4*b*c*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.10, size = 280, normalized size = 2.41

method result size
default \(\frac {a x \sqrt {-c^{2} d \,x^{2}+d}}{2}+\frac {a d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{4 c \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) \left (i+2 \arcsin \left (c x \right )\right )}{16 c \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) \left (-i+2 \arcsin \left (c x \right )\right )}{16 c \left (c^{2} x^{2}-1\right )}\right )\) \(280\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)

[Out]

1/2*a*x*(-c^2*d*x^2+d)^(1/2)+1/2*a*d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b*(-1/4*(-d*(c
^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/(c^2*x^2-1)*arcsin(c*x)^2+1/16*(-d*(c^2*x^2-1))^(1/2)*(-2*I*(-c^2*x^2+1)
^(1/2)*x^2*c^2+2*c^3*x^3+I*(-c^2*x^2+1)^(1/2)-2*c*x)*(I+2*arcsin(c*x))/c/(c^2*x^2-1)+1/16*(-d*(c^2*x^2-1))^(1/
2)*(2*I*(-c^2*x^2+1)^(1/2)*x^2*c^2+2*c^3*x^3-I*(-c^2*x^2+1)^(1/2)-2*c*x)*(-I+2*arcsin(c*x))/c/(c^2*x^2-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

b*sqrt(d)*integrate(sqrt(c*x + 1)*sqrt(-c*x + 1)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)), x) + 1/2*(sqrt(-c
^2*d*x^2 + d)*x + sqrt(d)*arcsin(c*x)/c)*a

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x)),x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2),x)

[Out]

int((a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________